1,895 research outputs found

    Baroclinic Vorticity Production in Protoplanetary Disks; Part I: Vortex Formation

    Get PDF
    The formation of vortices in protoplanetary disks is explored via pseudo-spectral numerical simulations of an anelastic-gas model. This model is a coupled set of equations for vorticity and temperature in two dimensions which includes baroclinic vorticity production and radiative cooling. Vortex formation is unambiguously shown to be caused by baroclinicity because (1) these simulations have zero initial perturbation vorticity and a nonzero initial temperature distribution; and (2) turning off the baroclinic term halts vortex formation, as shown by an immediate drop in kinetic energy and vorticity. Vortex strength increases with: larger background temperature gradients; warmer background temperatures; larger initial temperature perturbations; higher Reynolds number; and higher resolution. In the simulations presented here vortices form when the background temperatures are 200K\sim 200K and vary radially as r0.25r^{-0.25}, the initial vorticity perturbations are zero, the initial temperature perturbations are 5% of the background, and the Reynolds number is 10910^9. A sensitivity study consisting of 74 simulations showed that as resolution and Reynolds number increase, vortices can form with smaller initial temperature perturbations, lower background temperatures, and smaller background temperature gradients. For the parameter ranges of these simulations, the disk is shown to be convectively stable by the Solberg-H{\o}iland criteria.Comment: Originally submitted to The Astrophysical Journal April 3, 2006; resubmitted November 3, 2006; accepted Dec 5, 200

    Drilling of shallow marine sulfide-sulfate mineralisation in south-eastern Tyrrhenian Sea, Italy; Seafloor sulfides, Tyrrhenian Sea, highsulfidation; hydrothermal systems, Palinuro

    Get PDF
    Semi-massive to massive sulfides with abundant late native sulfur were drilled in a shallowwater hydrothermal system in an island arc volcanic setting at the Palinuro volcanic complex in the Tyrrhenian Sea, Italy. Overall, 12.7 m of sulfide mineralisation were drilled in a sediment-filled depression at a water depth of 630 - 650 m using the lander-type Rockdrill I drill rig of the British Geological Survey. Polymetallic (Zn, Pb, Sb, As, Ag) sulfides overlie massive pyrite. The massive sulfide mineralisation contains a number of atypical minerals, including enargite-famatinite, tennantite-tetrahedrite, stibnite, bismuthinite, and Pb-,Sb-, and Ag-sulfosalts, that do not commonly occur in mid-ocean ridge massive sulfides. Analogous to subaerial epithermal deposits, the occurrence of these minerals and the presence of abundant native sulfur suggest an intermediate to high sulfidation and/or high oxididation state of the hydrothermal fluids in contrast to the near-neutral and reducing fluids from which base metal-rich massive sulfides along mid-ocean ridges typically form. Oxidised conditions during sulfide deposition are likely related to the presence of magmatic volatiles in the mineralising fluids that were derived from a degassing magma chamber below the Palinuro volcanic complex

    An unstructured CD-grid variational formulation for sea ice dynamics

    Full text link
    For the numerical simulation of earth system models, Arakawa grids are largely employed. A quadrilateral mesh is assumed for their classical definition, and different types of grids are identified depending on the location of the discretized quantities. The B-grid has both velocity components at the center of a cell, the C-grid places the velocity components on the edges in a staggered fashion, and the D-grid is a ninety-degree rotation of a C-grid. Historically, B-grid formulations of sea ice dynamics have been dominant because they have matched the grid type used by ocean models. In recent years, as ocean models have increasingly progressed to C-grids, sea ice models have followed suit on quadrilateral meshes, but few if any implementations of unstructured C-grid sea ice models have been developed. In this work, we present an unstructured CD-grid type formulation of the elastic-viscous-plastic rheology, where the velocity unknowns are located at the edges, rather than at the vertices, as in the B-grid. The notion of a CD-grid has been recently introduced and assumes that the velocity components are co-located at the edges. The mesh cells in our analysis have nn sides, with nn greater than or equal to four. Numerical results are included to investigate the features of the proposed method. Our framework of choice is the Model for Prediction Across Scales (MPAS) within E3SM, the climate model of the U.S. Department of Energy, although our approach is general and could be applied to other models as well. While MPAS-Seaice is currently defined on a B-grid, MPAS-Ocean runs on a C-grid, hence interpolation operators are heavily used when coupled simulations are performed. The discretization introduced here aims at transitioning the dynamics of MPAS-Seaice to a CD-grid, to ultimately facilitate improved coupling with MPAS-Ocean and reduce numerical errors associated with this communication

    On the Role of Global Warming on the Statistics of Record-Breaking Temperatures

    Full text link
    We theoretically study long-term trends in the statistics of record-breaking daily temperatures and validate these predictions using Monte Carlo simulations and data from the city of Philadelphia, for which 126 years of daily temperature data is available. Using extreme statistics, we derive the number and the magnitude of record temperature events, based on the observed Gaussian daily temperatures distribution in Philadelphia, as a function of the number of elapsed years from the start of the data. We further consider the case of global warming, where the mean temperature systematically increases with time. We argue that the current warming rate is insufficient to measurably influence the frequency of record temperature events over the time range of the observations, a conclusion that is supported by numerical simulations and the Philadelphia temperature data.Comment: 11 pages, 6 figures, 2-column revtex4 format. For submission to Journal of Climate. Revised version has some new results and some errors corrected. Reformatted for Journal of Climate. Second revision has an added reference. In the third revision one sentence that explains the simulations is reworded for clarity. New revision 10/3/06 has considerable additions and new results. Revision on 11/8/06 contains a number of minor corrections and is the version that will appear in Phys. Rev.
    corecore